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Abstract—Panoptic segmentation of point clouds is a crucial
task for autonomous vehicles to comprehend their surroundings
when using their highly accurate and reliable LiDAR sensors.
Recent developments in panoptic segmentation have rekindled
the interest of the scientific community in integrating semantic
(things) and instance (stuff) segmentation effectively. RangeNet
is one of the most advanced encoder-decoder-based algorithms
for semantic segmentation of LiDAR-based 3-D point cloud data.
In this work, we aimed at implementing a Mask-RCNN-based
instance head to a RangeNet backbone to run it in parallel with
the semantic head. Additionally, the semantic and instance heads
are unified by pixel-wise classification to create a parameter-
free panoptic head. It was expected to give results with faster
inference, however, it is observed that it resulted in a complex
architecture due to processing constraints, due to which we were
able to achieve results till Semantic Segmentation.

Index Terms—Panoptic Segmentation, Semantic Segmentation,
Instance Segmentation, RangeNet, Mask R-CNN

I. INTRODUCTION

There have been continuous developments in the panoptic
segmentation tasks, which involve both semantic and instance
segmentation. The semantic segmentation (stuff) assigns se-
mantic labels to each stuff class. The instance segmentation
identifies and classifies each occurrence within the things
class. It is used for detecting and demarcating various object
boundaries. This is crucial in areas like autonomous driving.
In this case, the LIDAR-based data has to be processed
in real-time to classify road class from trees, walls, and
so on. These interesting applications made us select this
topic for our project. The data which we worked on is the
SemanticKITTI[1] which is a readily available LIDAR-based
dataset.

The developments in Panoptic Segmentation were made
possible by simple yet powerful baseline methods, such as
Fully Convolutional Networks (FCN) [2], fast R-CNN [3],
faster R-CNN [4], and Mask R-CNN [5]. These algorithms
are robust and show higher flexibility, as well as provide a
basis for much of the contemporary developments in these
areas.

In this project, our aim is to implement semantic and
instance head as an extension to the RangeNet backbone. This
will be followed by a common panoptic head which renders
the results of both instance and semantic segmentation heads.
Our instance-head uses the Mask R-CNN architecture which
involves a 2 stage framework: the first stage scans the image
and generates proposals (areas likely to contain an object),

and the second stage classifies the proposals and generates
bounding boxes and masks. For each pixel in the panoptic
head, if it belongs to the stuff, the goal of the panoptic
segmentation system is simply to predict the class label within
the stuff class. Otherwise, the system has to decide which
instance and which class of things it belongs to. The challenge
of this task lies in the fact that the system must give a definite
answer for each pixel.

II. RESEARCH CONTRIBUTIONS

We aim to implement the following modifications to the
existing Panoptic Segmentation architecture:

1. Extension of modified RangeNet baseline to implement
a semantic head and Mask R-CNN-based instance head.

2. Panoptic head implementation via pixel-wise classifica-
tion to get the final panoptic output.

III. RELATED WORK

Semantic Segmentation: Semantic segmentation tasks for
self-driving cars using images have made incredible progress
in the past decade due to the emergence of deep neural net-
works and the availability of increasingly large-scale datasets
for the task, such as Cityscapes [15] and SemanticKITTI[16],
SqueezeSeg and SqueezeSegV2 [17], [18], by Wu et al., utilize
a spherical projection method of the point cloud to enable the
usage of 2D convolutions. Also, a lightweight FCN is applied
for the task along with a conditional random field (CRF) to
smooth the results. PolarNet [19] projects the 3D point cloud
data in the birds-eye view format and uses ring convolutions
on the radially defined grids. The current state-of-the-art for
semantic segmentation is the RangeNet, which employs Range
Image Projection to overcome the issues arising from the loss
of information during 3D to 2D point cloud data conversion.
It provides high performance on the SemanticKITTI data.

Instance Segmentation: The Instance (things) segmenta-
tion task deals not only with identifying the semantic class a
pixel is associated with, but also the specific object instance
to which it belongs. Fast R-CNN[20] employs an end-to-end
trained RoI (Region of Interest) pooling layer to generate high-
quality region proposals. Faster R-CNN [21] advanced this
method by learning the attention mechanism with a Region
Proposal Network (RPN). Faster R-CNN is flexible and robust
to many follow-up improvements. While Faster R-CNN has
two outputs for each candidate object, a class label, and a
bounding-box offset, Mask R-CNN is the addition of a third



Fig. 1. RangeNet-based Common FPN backbone with cross connections

Fig. 2. Architecture of Instance Segmentation

branch that outputs the object mask. This greatly simplifies the
multi-stage the pipeline of original R-CNN. Thus, Mask R-
CNN is the current leading framework in several benchmarks.

Panoptic Segmentation: The unified segmentation task for
things and stuff classes has been studied over a long time,
including early work on scene parsing [11], and image parsing
[12]. Among the current state-of-the-art models, UPSNet[13]
utilizes a single encoder-decoder network as a backbone to
provide shared feature maps. It is designed primarily for
COCO and Cityscapes datasets. Similar to UPSNet, Effi-
cientLPS[14] uses a single network as a backbone. Going
a step further, EfficientLPS effectively addresses the loss of
information arising from 3D to the 2D conversion of LiDAR
point cloud data by employing a 2D CNN for the task while
explicitly utilizing the unique 3D information provided by
point clouds.

Based on the literature review, given the current state-of-
the-art performances for both models, we aim to implement
the semantic head, the instance head based on Mask R-CNN,
followed by a common panoptic head on the top of RangeNet
backbone.

IV. METHODOLOGY

1. Dataset: Commonly used for perception-based tasks,
Semantic KITTI collects 3-D point cloud LiDAR data using
real-world inputs captured by Velodyne sensors. The dataset,

Fig. 3. Semantic, Instance and Panoptic Segmentation Heads

which consists of many sequences recorded in various loca-
tions throughout the world, consists of Velodyne sensor data
in BIN file format and ground truth labels for panoptic classes
for each point-cloud data scan.

2. Point Cloud Input: LiDAR-based 3D point cloud data
can be directly processed and utilized for semantic and in-
stance segmentation to obtain class labels as well as instances
for each point in the cloud. Another way to perform the same is
by projecting the point cloud from 3D space to 2D space. This
step reduces the dimensionality of the map. It is usually done
either in spherical projection or in bird’s eye view projection.
Here, we use a spherical projection of the point cloud data
as input to the backbone. A spherical projection (or image
of a region) contains five channels (X, Y, Z, R, and I), each
representing specific information about a 3D point. The X,
Y, and Z channels correspond to the 3D point’s X, Y, and Z
coordinates. R is the point’s Euclidean distance or extent from
the origin and I is the point’s intensity.

3. Encoder: The RangeNet encoder is based on YOLOv3’s
Darknet53 (53-layered). Batch normalization and LeakyReLU
follow each one of the convolution laters. The encoder can be
divided into numerous residual blocks, each one consisting of
2 convolution layers with 1x1 kernel size, and a kernel of size
3x3 follows it. The inputs to each of the residual blocks is
added to different blocks in the decoder.

4. Decoder: The decoder employed in our model involves
upsampling CNNs layers (to take the image back to its original
dimensions) which are followed by a residual block and a
dropout layer. Skipped links are included in the network and
connect each encoder block input to the corresponding decoder



Fig. 4. Architecture of our Panoptic Head

block output. This helps us recover some of the high-frequency
edge information lost during the downsampling process.

5. Semantic Segmentation Head: Following the decoder,
the semantic segmentation involves a layer performing a 1 x 1
convolution to obtain the output feature maps of dimensions C
x H x W where C is the number of classes. This is followed
by a Softmax activation to obtain the pixel-wise probability
distribution of the classes.

6. Instance Segmentation Head: The instance segmen-
tation head consists of the following components - Region
Proposal Network, Region Of Interest(RoI) Align Layer, a
Softmax activation and a bounding box refinement function.

6.1. Region Proposal Network: The RPN runs over the
image in a sliding-window manner and finds regions that
contain objects. It uses anchor boxes to detect multiple objects,
objects of different scales, and overlapping objects in an
image. These are boxes distributed over the image area. There
are about 100,000 anchors of various dimensions and aspect
ratios that overlap to cover as much of the image as possible.

6.2. Bounding Box Refinement: A positive anchor (fore-
ground anchor) might not be centered perfectly over the object.
So the RPN estimates a change in x, y, width, and height to
refine the anchor box to fit the object better.

6.3. RoIAlign Layer: The RoIAlign Layer is used to
improve the spatial alignment of the feature maps from the
decoder and the region proposals from the RPN Layer. The
ROI Align Layer uses bilinear interpolation to warp the
features in each ROI to the fixed size. This allows the features
to be more accurately aligned to the objects in the input image
which can improve the performance of the network.

6.4. Softmax activation: The output from RoIAlign Layer
is passed through Fully-connected layers followed by a final
softmax layer, to obtain the pixel-wise probability distribu-
tions.

7. Panoptic Segmentation Head: Once we have the seman-
tic segmentation and instance segmentation results from the
above two heads, we combine their outputs (specifically the
logits per pixel) into the panoptic segmentation head. To begin,
logits from semantic segmentation are divided into separate
stuff and thing classes. Then stuff classes are directly taken in

the panoptic head. For instance classes, mask matching is done
by combining the logits from semantic and instance heads.
After that, the mask removal technique is used to remove false
positive predictions from the instance segmentation branch.
Specifically, as our overall pipeline is in TensorFlow and
UPSNet is written in PyTorch, we had to make a few changes
and leave all the rest of the functionalities, to have a baseline
Panoptic Head for our code. For Mask Matching, pixelwise,
we have compared the masks recieved from semantic and
instance heads, if it is having an high associativity we are then
using the Mask Removal function to remove the redundant
masks.

Training Process: Out of the vast (21 sequences) of data
in the LiDAR Point Cloud Semantic KITTI data, the first
seven were used for the training process, the next two for
the validation, and the data 00 for testing purposes. The
training set is then divided into batches depending on the
batch size. Given the constraints of the hardware available, we
could train with a batch size of 2 on NVIDIA A100-PCIE-
40GB MIG 1g.5 GB, while the Google Colab Pro platform
(P100 GPU) could train with a higher batch size of 4. The loss
was calculated using the weighted categorical cross-entropy.
The loss calculation did not include the unlabelled points and
by making their weights equal to zero in the training process.
The weights were tuned as the inverse square root of the class
frequency.

Evaluation Metrics and Optimization: The evaluation
metrics of LiDAR-based panoptic segmentation are the Panop-
tic Quality (PQ), Segmentation Quality (SQ), and Recognition
Quality (RQ) which are calculated across all classes. The
above three metrics are also calculated separately on things
and stuff classes.

For each class, the unique matching splits the predicted
and ground truth segments into three sets: true positives (TP),
false positives (FP), and false negatives (FN), representing
matched pairs of segments, unmatched predicted segments,
and unmatched ground truth segments, respectively.

Mean IoU (mIoU) is also used to evaluate the quality of the
sub-task of semantic segmentation. IoU is the ratio between
correctly predicted pixels and the total number of pixels in ei-
ther the prediction or ground truth for each class. I for semantic
segmentation is distinct from our segmentation quality (SQ),
which is computed as the average IoU over matched segments.
We will train the networks on SemanticKitti and nuScenes



TABLE I
QUANTITATIVE COMPARISON OF EVALUATION METRICS ON SEMANTIC-KITTI TEST DATASET

LiDAR point cloud dataset and evaluate the performance.
In addition to these, we have measured the precision and

recall of the resultant model. Precision measures the proportion
of true positive predictions made by the model, while recall
measures the proportion of true positive examples that were
correctly predicted by the model. Precision is defined as the
number of true positive predictions made by the model divided
by the total number of positive predictions made by the model.
The recall is defined as the number of true positive predictions
made by the model divided by the total number of true positive
examples in the dataset. In general, a good model should have
high precision and a high recall.

Attempts have been made to implement both SGD and
Adam as optimizers. The final implementation will use the
Adam optimizer for the following reasons:

1. Adam computes individual learning rates for various
parameters. At each iteration, the actual step size obtained by
Adam approximately limits the step size his hyperparameter.

2. The Adam update rule step size is independent of the
gradient size. This is useful when traversing areas with small
gradients (saddle points, canyons, etc.). In such regions, the
stochastic gradient descent (SGD) optimizer has difficulty
navigating them quickly.

V. EXPERIMENTS

The panoptic segmentation can be done in 3 ways in terms
of Backbone. Usually, 2 separate backbones for semantic and
instance segmentation are used. In the research developments,
some architectures have implemented the network with a
single encoder dual decoder. In this project, we have tried
implementing the shared encoder-decoder for both the instance
as well as semantic heads.

In the independent backbone architecture, we can parallel
run instance and semantic segmentation in order to extract
mask logits required for panoptic head processing in the
form of tensors. Although there is a relative reduction in
complexity(more than 65 percent), an accurate model is not
guaranteed. Therefore, we tried taking this approach of shared
encoder-decoder.

VI. RESULTS

Table 1 shows a quantitative comparison between the met-
rics Accuracy and IoU on the Semantic KITTI Dataset.

Baseline RangeNet showed better accuracy and mean IoU
scores as compared to our modified architecture. But this result
is due to a lack of proper model training and may require more
training (up to 200 epochs) to get some conclusive results.

Also, since false negatives are more likely to lead to acci-
dents than false positives, network implementations achieved
reasonable IoU scores very close to RangeNet, especially in
the desirable car class for autonomous driving. The low IoU
values for the fence, pedestrian, and traffic sign classes are
attributed to the very small number of instances of fences,
pedestrians, and traffic signs in the dataset, and these fences,
pedestrians, and traffic signs Signs instances are much smaller
and have very fine detail, making segmentation difficult. It is
clear that the roads and sidewalk classes have high IoU scores
because these classes are very common in the dataset.

Figure 5 shows the output of the trained network.

VII. CHALLENGES

Through the background research that we performed, we
were exposed to different computer vision techniques. How-
ever, Panoptic Segmentation is a recent development, and the
documentation on it is currently limited. Moreover, Panoptic
tasks involved both Semantic and Instance segmentation tasks
to be performed simultaneously, which made it difficult. The
major baselines that we had for reference were UPSNet,
RangeNet, and Mask R-CNN developed over the past few
years. Furthermore, these baselines worked primarily for a
specific dataset (Eg. SemanticKITTI, COCO, Cityscapes).
Thus, as RangeNet (utilized by us for semantic segmentation)
was based on the SemanticKITTI dataset, we used the same
dataset for our model. However, Mask R-CNN (which we
were implementing for instance segmentation) was built on
COCO, and thus, the task of making the SemanticKITTI data
compatible with it is really complicated and caused numerous
problems in the process. As neither RangeNet nor Mask R-
CNN had panoptic heads, we referred to UPSNet. Again,
UPSNet being based on Cityscapes data, it is really tough
to make it compatible with SemanticKITTI. Thus, as our
implementation is based on three different architectures, we
had to analyze and adjust the feature pyramid shapes at mul-
tiple different locations for incorporating them. Furthermore,
the UPSNet panoptic head employs multiple loss functions.
Together with the dependencies from other files, there were
eight loss functions, making it a really tough task to implement
all of them to fit them into our model.

Also, the Velodyne-based SemanticKITTI dataset that we
utilized was very large in size (80GB+) and in .bin format, so
it took us a lot of time to explore it, set it up, and process it.
Further, the data was in the original 3D Point Cloud format,
whereas all the existing models take 2-D converted data as
the input. After multiple trials, our devices were not able



Fig. 5. 1) Top: Ground Truth 2) Middle: Output of our architecture 3) Bottom:
Output from RangeNet

to implement it. The implementation required much better
hardware than what was available to us. This made us shift
to clusters, but due to a lack of computational resources, it
again failed. Finally, we were able to run it to the semantic
head. Further, we had to set up and implement CUDA modules
on our devices. Further, as the dataset we have chosen to
implement this architecture on, is rather large ( 80GB), this
was one reason why it is taking a longer time to run. When
we tried to run the Panoptic Architecture, we were unable to
secure enough resources to run the entire architecture, as the
WPI Cluster - Turing is a shared space and it won’t allow
us to use the resources for a longer time. Other Panoptic
Architectures have run on Industrial GPUs (for eg; multiple
Tesla V100s) and they achieved decent results only after 100
epochs, which would take a prolonged period to complete the
run.

VIII. CONCLUSIONS AND FUTURE WORK

In this project, we have explored the panoptic segmentation
architectures and built one in TensorFlow 2.0 on the top of
RangeNet backbone. It is observed that the architecture is
complex in terms of computations as it is a combination of
3 different architectures semantic head, instance head, and
panoptic head. Though considerable results are obtained with
semantic segmentation, there are computational and com-
plexity limitations with instance segmentation and panoptic
segmentation.

For future work, we plan to reduce the complexity of our
architecture and run the architecture with high computational
hardware. Additionally, we would like to exploit our under-
standing of panoptic segmentation gathered from our analysis
to make it with faster inference for real-time applications.

ACKNOWLEDGMENT

We would like to express our gratitude to Prof. Fabricio
Murai for facilitating an intellectual dialogue on bolstering
our basics and current state of the domain of Deep Learning.

REFERENCES

[1] Xu Yan, Jiantao Gao, Chaoda Zheng, Chao Zheng, Ruimao Zhang,
Shenghui Cui, Zhen Li. (2022). 2DPASS: 2D Priors Assisted Semantic
Segmentation on LiDAR Point Clouds.

[2] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for
semantic segmentation. In CVPR, 2015

[3] R. Girshick. Fast R-CNN. In ICCV, 2015
[4] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-

time object detection with region proposal networks. In NIPS, 2015

[5] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask R- CNN. In ICCV,
2017

[6] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai,
Ersin Yumer, Raquel Urtasun. (2019). UPSNet: A Unified Panoptic
Segmentation Network. IEEE/CVF Conference
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