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Abstract: Through the use of implicit neural representations to describe
three-dimensional scenes, Neural Rendering Fields, or NeRF, have shown
remarkable abilities in novel view synthesis. But volumetric rendering’s
intrinsic computing requirements makes NeRF unsuitable for real-time ap-
plications on hardware with limited resources, especially mobile devices.
Despite the fact that several approaches have been developed for reducing
NeRF’s latency problems[Agarap 2018], many still rely on expensive GPUs or
large amounts of storage capacity, neither of which are available on mobile
devices.

This project explores an effective neural rendering technique designed
for mobile device real-time operation in response to these difficulties. We
explored some new network architectures optimized for mobile operation,
based on the idea of neural light fields (NeLF)[Attal et al. 2022] , which sim-
plifies rendering by using one forward pass per ray for pixel color prediction.
On mobile devices, the proposed model shows real-time inference for both
artificial and real-world scenarios. An interesting rendering latency of 20
FPS (iPad) was achieved for a real 3D scene.

Moreover, our project explores the use of pruning algorithms to maximise
the neural network’s storage footprint. Our tests show that rendering quality
can be harmed by checkpoint pruning, and it can be recovered a little by
using some techniques like iterative pruning.
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1 INTRODUCTION
The field of computer graphics has completely changed with the in-
troduction of Neural Rendering Fields (NeRF), especially in the area
of novel-view synthesis. These methods produce high-quality 3D
scene renderings by using implicit neural representations. Unfortu-
nately, NeRF’s built-in volumetric rendering approach places heavy
computational demands on rendering speed and real-time perfor-
mance[Barron et al. 2021]. This restriction is most noticeable when
attempting to use NeRF on hardware with limited resources, such
mobile devices, which are lacking of high-end GPUs’ computing
capacity.
The growing uses of virtual reality and 3D scanning, where

smooth, real-time rendering on mobile devices may enable engaging
experiences for consumers, are the reason for the importance and
interest in tackling this topic. This is a fascinating area to explore
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since it has the potential to simplify asset generation and rendering
by doing away with the requirement for precise mesh, texture, or
material parameters[Barron et al. 2022].
We address the issue of real-time neural rendering on mobile

devices in this project, with a special focus on novel-view synthesis
with NeRF. Having acknowledged the drawbacks of volumetric ren-
dering on mobile platforms, our goal is to go over these challenges
and help make neural rendering on devices with limited resources
a reality.

Our approach makes use of two essential on-device learning tech-
niques: iterative pruning checkpoints and knowledge distillation
using pseudo images. In addition to addressing the computational
constraints imposed by mobile devices, these techniques open the
door for effective storage utilisation. Unlike previous efforts that
frequently depend on expensive GPUs or sacrifice rendering quality
in favour of speed, our initiative aims to find a fair compromise. We
present a unique network architecture that retains high-resolution
rendering for both synthetic and real-world situations while achiev-
ing real-time inference and drastically lowering storage needs over
earlier approaches.

Our goal in conducting this project is to present a strong case for
the implementation of neural rendering on mobile devices, opening
the way for applications like interactive 3D object manipulation and
virtual try-on. Our approach contributes to the larger objective of
enabling sophisticated graphics on resource-constrained devices by
straddling the line between effective neural rendering, on-device
learning, and storage optimisation.

Fig. 1. Overview of MobileR2L Network

2 PROPOSED APPLICATION
We took inspiration from the MobileR2L[Cao et al. 2023] framework,
a real-time neural rendering model created with mobile devices
in mind, in our attempt to achieve real-time neural rendering on
mobile devices. The MobileR2L model is a perfect fit for our project
as it effectively strikes a compromise between rendering quality,
inference speed, and storage requirements.

2.1 Knowledge Distillation from NeLF Teacher Model
After undergoing extensive training on a variety of settings, the
NeLF teacher model can produce high-quality images with just
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one forward pass for each ray. For real-time applications, when
reducing processing demands is crucial, this feature is very helpful.
Through the use of the NeLF teacher model, we aimed to capture
the rich information that it learned throughout its training process,
therefore capturing its capacity to produce accurate renderings with
efficiency.
The NeLF teacher model was trained on the LEGO dataset to

make sure it could handle a range of spatial layouts, texturing, and
lighting conditions that were typical of real-world situations. The
resilience and adaptability of the learned representations of the
NeLF teacher model were enhanced by the use of such a diverse
and readily available dataset.
The NeLF teacher model was used to create pseudo visuals as

part of the knowledge distillation process. The core of the complex
knowledge represented in the teacher’s model was captured by
these pseudo images, which functioned as a surrogate dataset. The
teacher model’s comprehension of scene representations, lighting
interactions, and view synthesis was captured in the pseudo images,
which served as a condensed yet rich training set for our lightweight
student model, MobileR2L.

By using the pseudo images for training, the MobileR2L student
model was able to pick up and replicate the insightful knowledge
extracted from the NeLF teacher model. This procedure success-
fully transmitted the capability of low-complexity real-time scene
rendering, which is appropriate for mobile device deployment.
To do this, we adopted the NeLF teacher model’s knowledge

distillation in an attempt to balance rendering quality with model
efficiency. By using this method, we were able to drastically lower
the number of computations and input parameters needed for infer-
ence, which opened up the possibility for real-time neural rendering
on mobile devices without sacrificing the visual quality of the pic-
tures that were produced. Our MobileR2L student model is now
well-suited for real-world applications when computing resources
are few, thanks in large part to the knowledge extracted from the
NeLF instructor model.

2.2 Hyperparameter Considerations
Super-Resolution (SR) modules for high-resolution rendering and
an effective backbone comprise our network architecture, which
closely resembles the MobileR2L concept. The efficient backbone
is modelled after residual blocks from the original R2L model and
consists of 60 convolutional layers with activation and normalization
algorithms. Notably, for improved optimization and mobile device
compatibility, we swapped out the fully connected (FC) layers in
the backbone for convolutional (CONV) layers.
We used SR modules after the backbone to overcome memory

limitations on mobile devices and provide high-resolution images
with lower latency. With the help of these modules, we may only
send a portion of the rays, upsampling the output to create a picture
with high resolution. Three SR modules and sixty CONV layers
make up the efficient backbone of our model, which we refer to as
D60-SR3.
We sought to achieve a considerable reduction in the number

of input parameters and calculations by integrating knowledge
distillation from a NeLF teacher model with this adaption of the

MobileR2L architecture. This reduced the size of the model and
made it easier to make decisions in real time on mobile devices with
limited resources. Our dedication to tackling the difficulties of neural
rendering on mobile platforms while preserving rendering quality
and efficiency is demonstrated by the selection of our customized
architecture and knowledge distillation method.

3 METHODOLOGY
A key component of our process was building a reliable and effective
pipeline, which presented a number of problems in the development
of an on-device deep neural network for real-time neural rendering.
The process of building this pipeline was quite meticulous, and
much of our work was focused on solving different technological
problems.

3.1 Knowledge Distillation with AWS Cluster
We first addressed the critical process of knowledge distillation
by using the checkpoint of a pre-trained Neural Light Field (NeLF)
model to provide pseudo data that we needed to train our MobileR2L
student model. The computational intensity of this complex proce-
dure made it necessary to use specialised libraries like Tiny Cudann
in order to efficiently extract the information contained in the NeLF
teacher model.
We utilised the power of a powerful cloud computing infras-

tructure, an AWS cluster, to expedite this process of knowledge
distillation. Using GPU instances in the AWS environment was cru-
cial for assuring effective installs and faster computations during
the complex pseudo data generation process. Using GPU instances
greatly accelerated the amount of processing power needed for the
computationally demanding parts of knowledge distillation.

It required careful attention to detail to set up and configure the
environment for this task. A special attention to the integration
of Tiny Cudann and other dependencies was paid to make sure
that everything ran smoothly and in sync inside the AWS cluster.
This complex setup was necessary to maximise GPU parallelization
efficiency and optimize the distillation process.

3.2 Student Training on WPI’s Turing Cluster
With the pseudo data successfully generated through the knowl-
edge distillation process, the subsequent critical phase involved the
training of our MobileR2L student model. This training phase was
indispensable for enabling the model to learn from the informative
dataset derived from the NeLF teacher model’s pseudo images.

We needed to complete this training process as quickly and effec-
tively as possible, therefore we used the powerful Turing Cluster
computer at WPI University. This powerful GPU-enhanced high-
performance computing cluster was crucial in greatly accelerating
the training process. Faster convergence and model refining were
made possible by the parallelization of calculations made possible
by the availability of these potent GPUs.
One reason for the accelerated training schedule was the delib-

erate use of the Turing Cluster and its dedicated GPU hardware.
The training procedure, which usually took a while, was effectively
finished in around one and a half days. This expedited schedule
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was evidence of the Turing Cluster’s optimal use of its parallel
processing power and computing resources.

Fig. 2. Training and Inference Pipeline.

3.3 Application Development with Lens Studio
The following critical phases required getting theMobileR2L student
model ready for on-device deployment and developing an applica-
tion for real-time rendering after the model had been successfully
trained. To guarantee compliance with on-device deployment, this
complex approach involved converting the trained model’s check-
point to the ONNX format. Next, an application was developed
using Lens Studio[Len [n. d.]] utilising SnapML libraries.
This phase started with the checkpoint of the trained student

model being converted to the ONNX format. Because of its adaptabil-
ity and compatibility, this format was selected to enable on-device
distribution and smooth interaction with a variety of systems. The
conversion procedure made sure that the learned capabilities of the
trained model could be conveniently used on a mobile device.
Then the application started to be developed with Lens Stu-

dio[NeR [n. d.]], a robust platform for making augmented reality
experiences. Lens Studio was the perfect setting for rendering the
Neural Rendering Fields (NeRF) model on Snapchat because of its
features, especially its interaction with SnapML libraries. In order
to provide a seamless and optimal integration of the trained model
into the Lens Studio environment, the development process ne-
cessitated careful consideration of the distinct characteristics and
requirements of SnapML.

One of the main goals of the application development process was
to optimize the model for mobile device real-time performance. This
required optimizing rendering settings, fine-tuning parameters, and
putting in place other adjustments to make sure the neural rendering
process could run smoothly within the limitations of mobile tech-
nology. The MobileR2L model’s integration with Lens Studio[Sna
[n. d.]] made it possible to create an immersive augmented reality
experience for Snapchat users. Users may now immediately experi-
ence real-time neural rendering on their mobile devices thanks to
the application, which was created to take advantage of SnapML’s
capabilities for effective model inference on the device.

3.4 Inference on iPad (Apple M1v Pro Chip)
We installed the model on an iPad with the Apple M1v Pro processor
after the program was complete. Selecting the right hardware was
essential to getting the best inference performance. Neural rendering

Fig. 3. Lens Studio Pipeline.

might be carried out effectively and with high-quality output if the
model was deployed on a mobile device, particularly one with a
potent processor like the M1v Pro.

4 RESULTS

Fig. 4. (a) Result from the model compression (b) Result with 50% pruned
model (c) Result from the 30% pruned fine-tuned model.

4.1 Performance Analysis
This section provides an analysis of the performance characteristics
of our on-device learning approach, highlighting the performance
of iterative pruning and knowledge distillation methods. Figure 4
shows results from these methods.

4.2 Knowledge Distillation with Pseudo Images
Knowledge distillation using pseudo images has proven to be highly
effective, with the distilled model preserving the core competencies
of the larger parent model. The utilization of pseudo images for
distillation allows the condensed model to retain a robust feature
set, enabling it to perform well. The resulting model, with a size of
13 MB, strikes an optimal balance between size and performance,
making it well-suited for on-device deployment where resources
are limited.
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4.3 Model Pruning and Trade-offs
Our approach involved iterative pruning at two levels: 50% and 30%,
followed by further fine-tuning to recover performance losses typi-
cally associated with the pruning process. The 50% pruned model,
while being the smallest at 8 MB, exhibited a performance trade-
off that was noticeable in compute-intensive tasks. Although the
reduction in size was significant, this came at the cost of reduced
accuracy and increased latency.
Conversely, the 30% pruned model, sized at 9 MB, presented a

more favorable trade-off. The modest reduction in size from the
knowledge distillation baseline allowed for a lesser impact on per-
formance, maintaining closer fidelity to the original model’s capa-
bilities. This level of pruning, complemented by subsequent fine-
tuning, proved to be a viable approach for on-device deployment,
offering a more balanced compromise between resource utilization
and functional performance.
In summary, our findings underscore the intricate balance be-

tween model size and performance in on-device machine learn-
ing applications. While knowledge distillation with pseudo images
emerged as the superior technique in preserving performance, the
pruning strategies provided valuable insights into the trade-offs
required for achieving a minimal model footprint.

4.4 Comparison Analysis
In our comparison analysis, we evaluate the performance and ef-
ficiency of various model optimization strategies applied to the
MobileNeRF[Chen et al. 2022] framework. We focus on three main
metrics: the size of the model, its latency, and RAM usage.

From Table 1, Knowledge Distillation stands out for significantly
reducing the model size from 125 MB in the original paper to 13 MB,
with a marginal impact on latency, achieving 20 frames per second
(FPS), and a slight reduction in RAM usage. This indicates a high
level of efficiency in model compression, achieving substantial size
reduction with minimal performance loss.
Conversely, the 30% Pruned + finetuned model demonstrates

the effectiveness of pruning techniques, reducing the model size
even further to 9 MB. This is accompanied by an improvement in
latency to 22 FPS, suggesting a faster model despite its reduced
size. The RAM usage for this model is slightly decreased to 680 KB,
representing a negligible trade-off given the benefits of reduced size
and increased speed.

The findings reveal that while KnowledgeDistillationwith pseudo
images strikes an optimal balance between size reduction and per-
formance, model pruning—particularly when combined with fine-
tuning—offers the most significant reduction in size and an increase
in processing speed, albeit with potential performance trade-offs.
Aggressive pruning strategies, such as a 50% reduction, must be
carefully considered due to their potential impact on the model’s
accuracy and generalizability.
Ultimately, the decision to employ Knowledge Distillation or

model pruning should be guided by the specific requirements of the
application. If maintaining performance is paramount, Knowledge
Distillation is the superior choice. However, if minimizing model
size and enhancing speed are more critical, pruning is the more
appropriate strategy.

Metric MobileNeRF Knowledge Dist 30% Pruned

Model Size (MB) 125 13 9
Latency (FPS) - 20 22
RAM (KB) - 700 680

Table 1. Comparison of Model Performance

Note: The ’-’ symbol indicates metrics not implemented for MobileNeRF or
not reported in the original paper, as these metrics are device-specific.

5 DISCUSSION, CHALLENGES AND LIMITATIONS:
Our study presents a comprehensive examination of model optimiza-
tion techniques applied to MobileNeRF, focusing on the trade-offs
between model size, latency, and memory usage.

5.1 Discussion
The application of Knowledge Distillation with pseudo images has
proven to be an effective strategy for size reduction while main-
taining a high level of performance. The distilled models retain a
significant portion of the original model’s capabilities, suggesting
that this technique is well-suited for scenarios where performance
cannot be compromised.
Model Pruning, particularly when combined with fine-tuning,

offers a viable solution for applications where storage and speed are
at a premium. The 30% pruned model strikes a balance, offering a
reduced footprint while preserving a degree of performance. How-
ever, when pruning is increased to 50%, there is a notable decline in
accuracy, highlighting the delicate balance between size reduction
and model capability.

5.2 Challenges
Many difficulties were encountered while constructing this exten-
sive pipeline, especially when setting up the AWS cluster, streamlin-
ing the training procedure on the Turing Cluster, and incorporating
the model into a Lens Studio real-time application. Iterative test-
ing, debugging, and teamwork were necessary to overcome these
obstacles. Our project’s timetable was mostly consumed by the
pipeline’s creation, which required painstaking attention to detail
from knowledge distillation to on-device deployment. The intricacy
of the pipeline highlighted how crucial each stage is to the effective
implementation of a real-time neural rendering model on mobile
devices.

5.3 Limitations
While our findings contribute valuable insights into model opti-
mization for on-device neural networks, several limitations must be
acknowledged:

• The metrics for the original MobileNeRF were not available,
limiting our ability to compare across all dimensions of perfor-
mance. Future studies could address this gap by implementing
these metrics on standardized devices to ensure comparabil-
ity.

• Our evaluation was constrained to specific hardware config-
urations. The generalizability of our results to other devices
with different specifications remains to be tested.
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• The pseudo images used for Knowledge Distillation were
generated from a limited dataset. The model’s performance
on a broader range of real-world images could differ from our
reported results.

• The pruning percentages were chosen based on heuristics
and prior literature. An exhaustive search over pruning per-
centages might yield a more finely tuned model, potentially
offering better performance.

• The training computation is highly resource-intensive, re-
quiring approximately 1.5 days of training on a single GPU
for one object. This involves the computation for both the
teacher and the student models, which may be prohibitive for
researchers with limited access to computational resources.

• The realism of the models may be insufficient for certain
applications, as the current approach does not incorporate
plane fitting or other advanced computer vision techniques.
This could affect the applicability of our models in scenarios
where high fidelity to real-world objects is crucial.

In conclusion, the trade-offs identified in this study are essential
for guiding future work on neural network optimization for mobile
devices. As the field advances, further research is needed to explore
these techniques in diverse operational contexts and with varying
model architectures.

6 CONCLUSION AND FUTURE WORK
In conclusion, this work has presented a detailed analysis of opti-
mization techniques for the MobileNeRF framework, with a focus
on Knowledge Distillation and Model Pruning strategies. Our in-
vestigation reveals that while Knowledge Distillation provides a
substantial reduction in model size with minimal performance loss,
Pruning offers additional size and speed benefits but with certain
trade-offs in performance.
Through this study, we have identified critical insights that not

only aid in understanding the balance between model efficiency and
effectiveness but also illuminate the practical challenges associated
with deploying neural network models on mobile devices. Despite
the limitations related to training computation demands and model
realism, our findings pave the way for future research to refine these
optimization strategies further.

Future work must continue to address these challenges, aiming to
reduce the computational overhead of model training and enhance
the realism of the optimized models, thereby extending the practical
applicability of MobileNeRF and similar frameworks in real-world
mobile applications. Looking ahead, several avenues appear promis-
ing for extending the capabilities of our work:

• CustomObject 3DModel:Development of tailored 3Dmod-
els for custom objects for specific use cases.

• Top Layer Fine-tuning: Implementing fine-tuning of only
the top layers of the network to reduce the overall training
time while maintaining the integrity of the learned features.

• Pruning-aware Fine-tuning: Exploring pruning-aware train-
ing methods that anticipate the effects of pruning and adjust
the training process to compensate for potential losses in
performance.

• ModelCompressionTechniques: Investigating othermodel
compression techniques such as quantization, which could
provide additional performance benefits and further reduce
the computational footprint of the models.

7 CONTRIBUTIONS
This research was made possible through the collaborative efforts
of our team, where responsibilities were allocated to leverage in-
dividual expertise effectively. The setup and development of the
pipeline, as well as the network configuration and optimization,
were adeptly handled by Shounak Naik and Swapneel Wagholikar.
The Lens Studio setup for viewing the asset generated from the
model and seamless performance was handled by Kewal Mishra.
A critical component of our project was the integration of our

model with SnapML within Lens Studio, ensuring that the assets
generated by our optimized MobileNeRF model were not only view-
able but also interacted with high performance and fidelity in a
real-world augmented reality context. This effort was handled by
Kewal Mishra.
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