
Navigating Complex Highway Scenarios with
Advanced RL techniques in Highway-Env

Swapneel Wagholikar
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, United States of America

swagholikar@wpi.edu

Bhaavin Jogeshwar
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, United States of America

bjogeshwar@wpi.edu

Chinmayee Prabhakar
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, United States of America

cprabhakar@wpi.edu

Abstract—This research compares a variety of architectures
that use Deep Q-Learning (DQN), Deep Q-Learning Memory
Replay (DQN-MR), and Deep Q-Learning Prioritized Experi-
ence Replay (DQN-PER), all of which were carried out in
discrete Action Space. An autonomous vehicle decision-making
environment, highway-v0, is used for this study. This study
shows that an algorithm’s performance depends on the kind of
environmental observation retrieved. The discrete action space
algorithms were evaluated for performance, and DQN-PER was
on top. Several challenges were faced with the reward distribution
and environmental setup, which were soon resolved, and we
arrived at satisfactory results.

Index Terms—DQN, highway env, discrete action space, RL

I. INTRODUCTION

Combining Deep Learning with Reinforcement Learning
techniques has created a practical framework for learning
complicated decision-making procedures in high-dimensional
environments. Reinforcement learning addresses the issue of
a learning agent being put in a setting to accomplish a task.
Autonomous driving is a technology that has the potential to
improve road safety, reduce traffic congestion, use less fuel,
and free up human drivers. Making decisions is crucial to the
autonomous driving architecture required to achieve autonomy.
In order to drive safely and correctly in an urban setting
without colliding with other agents, autonomous automobiles
must make the right judgments. Rule-based and imitation-
based algorithms make up the autonomous driving decision-
making framework. Decision-making for autonomous driving
also uses learning-based approaches like reinforcement learn-
ing and machine learning. We investigated Deep Reinforce-
ment learning for autonomous vehicle decision-making and
tested our systems using the OpenAI Gym-based Highway
Environment [1]. The following algorithms were chosen for
implementation:

• Deep Q-Learning (DQN) in discrete action space
• Deep Q-Learning Memory Replay (DQN-MR) in discrete

action space
• Deep Q-Learning Prioritized Experience Replay (DQN-

PER) in discrete action space

II. RELATED WORK

Mnih et al. (2013) proposed the original DQN algorithm,
which combined Q-learning with deep neural networks to learn

a control policy for playing Atari games. The authors used
a simple experience replay mechanism to store and sample
transitions from the agent’s experience.

Schaul et al. (2016) introduced DQN-MR, which improved
upon the original DQN algorithm by incorporating a more
efficient and effective memory replay strategy. The authors
proposed a prioritized sampling scheme that used a rank-based
prioritization method to sample experiences from the replay
buffer.

Schaul et al. (2016) also introduced DQN-PER, which
further improved upon DQN-MR by introducing a more so-
phisticated prioritization scheme based on the magnitude of
the temporal difference error. The authors proposed a power-
based prioritization scheme that assigns a higher priority to
experiences with a higher impact on the Q-values.

Wang et al. (2016) proposed Dueling Network Architectures
for Deep Reinforcement Learning, which introduced a novel
network architecture that separates the estimation of the state
value and the advantage for each action. The authors showed
that this architecture improved the learning efficiency of the
DQN algorithm.

Hessel et al. (2018) proposed Rainbow, which combines
several extensions to the DQN algorithm, including DQN-MR,
DQN-PER, dueling networks, multi-step returns, distributional
RL, and noisy networks. The authors showed that Rainbow
achieved state-of-the-art performance on several Atari games.

Van Hasselt et al. (2015) proposed Double Q-learning,
which addresses the overestimation bias of the Q-learning al-
gorithm by using two Q-functions instead of one. The authors
showed that Double Q-learning improved the performance of
the DQN algorithm on several Atari games.

Schaul et al. (2015) proposed Prioritized Experience Replay
for Deep Reinforcement Learning, which introduced priori-
tized experience replay as a general technique for improving
the efficiency of learning in deep reinforcement learning. The
authors showed that prioritized experience replay improved the
performance of the DQN algorithm on several Atari games.

III. METHODOLOGY

A. Deep Q-Network (DQN)

DQN (Deep Q-Network) is a variant of Q-Learning, a rein-
forcement learning algorithm that uses Q-values to determine



the optimal policy for an agent. DQN improves upon Q-
Learning by using a deep neural network to estimate Q-values,
allowing the algorithm to learn from high-dimensional inputs
such as images from a camera in an autonomous vehicle.

Lane switching is an important task for autonomous vehicles
that requires the vehicle to make a decision on when and how
to switch lanes safely and efficiently. DQN can be used to
train an agent to make these decisions by defining the state
of the agent as the current lane, the speed of the vehicle, the
distance to the vehicle in front and behind, and other relevant
information. The actions available to the agent can be defined
as switching to the left or right lane, staying in the current lane,
and adjusting the speed. The reward function can be designed
to encourage safe and efficient lane switching.

During training, the agent interacts with the environment,
observes the current state, and selects an action based on the
Q-values estimated by the neural network. The agent receives
a reward based on the action taken and the resulting state, and
the experience tuple (state, action, reward, next state) is stored
in the replay buffer.

target Q− value = reward

+ γ ∗max(Q(next state, all actions))

The Q-network is updated using gradient descent to mini-
mize the mean squared error between the predicted Q-value
and the target Q-value.

Once the Q-network is trained, the agent can use it to make
decisions on when and how to switch lanes based on the
current state. Overall, DQN can be an effective approach for
training autonomous vehicles to perform lane switching safely
and efficiently.

B. Deep Q-Network Memory Replay (DQN-MR)

We have implemented this RL algorithm using PyTorch and
the Highway-Env environment.

The essential libraries first imported into the code are the
gym, PyTorch, and the highway env module. Then, a class
called Replay Memory is developed to store transitions. Later,
these transitions are repeated to compute loss on batches
without linked states.

The difference between the current and previous screen
patches is used as the input by a DQN class, which outputs
various actions. Three convolutional layers are used in this
class’s forward method, followed by a fully connected layer.

The duration of each episode is plotted as a function of
episode number using the plot durations function. Addition-
ally, a get screen function is defined, returning a screen
requested by the gym as a numpy array.

To pick an action, use the select action function. The action
with the highest expected reward is selected, using the epsilon-
greedy method, with probability (1-EPS START), while a
random action is selected with probability EPS START.

The loss is calculated, and the model weights are optimized
using the optimize model function. The function exits if the

memory buffer has fewer transitions than BATCH SIZE. If
there are enough transitions in the buffer, a batch is sampled.
The batch items are concatenated with the non-final state mask
once calculated. The mean squared error between the actual
and expected Q-values is then used to determine the loss. The
Adam optimizer is then used to improve the model weights.

C. Deep Q-Network Prioritized Experience Replay (DQN-
PER)

Using PyTorch and the highway-v0 environment, we have
put the Prioritized Experience Replay (PER) algorithm into
practice. In the highway-v0 environment, a simulation of
a vehicle race, CNN models can complete tasks just by
observing the surroundings. A portion of the screen is used
by the algorithm as an input for the CNN models. A memory
buffer replay technique that prioritizes experiences is called the
PER algorithm. It is used to calculate the loss on batches with
prioritized experiences and no associated states. The DQN
algorithm is set up to use the distinction between the most
recent and earlier screen patches as input and produce various
results.

The PER class is intended to build a replay from a memory
buffer that prioritizes experiences. To store and retrieve the
transitions with priority, it includes push and sample meth-
ods. The transitions’ priorities are updated using the update
priorities function.

Three convolutional layers and one linear layer make up
the CNN model that the DQN class is defined to produce.
16, 32, and 32 filters are present in the three convolutional
layers, correspondingly. The action values are generated by
the linear layer using the convolutional layers’ output. The
difference between the patches on the current and previous
screens serves as the input.

The beta value for PER is calculated using the beta by frame
technique, which is specified. The frame index is inputted, and
the beta value is output. The beginning and final beta values
are determined by the variables beta start and beta frames.

IV. ENVIRONMENT

The OpenAI Gym third-party environment highway-env (1)
is utilized to implement the autonomous driving decision-
making challenge. This environment is made up of several sce-
narios, each with its own special circumstances and continuous
or discrete action space. The highway-v0 environment that we
employed is a straight highway scenario where maintaining
speed and continuously changing lanes to pass other vehicles
are the major goals.

Observation: The environment exposes 4 observation
types:

• Kinematics: This observation provides information on all
of the vehicles in the surroundings, including position,
velocity, and heading. The features parameter allows the
type of features to be set.

• Gray Scale: This observation creates a grayscale picture
of the surrounding area using the weights parameter in
the RGB to grayscale conversion.



• Occupancy Grid: For constructing an occupancy grid
around our agent, this kind of observation produces the
properties needed for the grid’s participating cars.

• Time to Collision: An array representing the expected
time to collision of observed cars traveling on the same
route as the agent is provided by this observation.

Each observation has its own benefits and drawbacks. We
came to the conclusion after investigating and testing that
value-based algorithms perform better with Gray Scale obser-
vation types while policy-based algorithms perform better with
Kinematics observation types. It should be noted that while
a multi-layered neural network may be utilized for all other
observations, Gray Scale observations require a convolutional
neural network for the agent to understand the observation.

The agent is given the observation after it has been obtained,
and the environment provides discrete action space.

Actions: When DiscreteMetaAction is used the actions
available are:

• 0 : ”Change the lane to one to the left”
• 1 : ”Stay idle”
• 2 : ”Change the lane to one to the right”
• 3 : ”Go Faster”
• 4 : ”Go slower”

Reward: The objective is to have the agent concentrate on
two jobs at once. The agent should move rapidly and advance
while avoiding collisions. Thus, the reward function includes
both of the following:

R(s, a) = a
v − vmin

vmax − vmin
− bcollision

where v, vmax, and vmin represent the ego-vehicle’s cur-
rent, minimum, and maximum speeds, respectively, and are
two coefficients.

V. EVALUATION METRICS

Deep reinforcement learning algorithms are considerably
sensitive to implementation details, hyper-parameters, choice
of environments, and even random seeds. The variability in the
execution can put reproducibility at stake. So it is necessary
to have common evaluation metrics across all the algorithms.
In our case, we have used the base default evaluation metrics
of highway-env. To evaluate different algorithms, we trained
the various algorithms with 1000 episodes and compared the
plots of mean reward versus the number of episodes. The plot
with the highest average reward and faster learning would be
the efficient algorithm.

VI. RESULTS

The graphs in figures 1, 2, and 3 indicate that after training
for 1000 episodes, the DQN agent had a mean score of 18.53.
On the other hand, the DQN-MR agent had a mean score of
35.79, and the DQN-PER agent had a mean score of 57.76
after training for the same number of episodes.

Fig. 1. DQN rewards vs number of episodes

Fig. 2. DQN-MR rewards vs number of episodes

Fig. 3. DQN-PER rewards vs number of episodes



VII. CONCLUSION

After running simulations with different value-based Deep
Reinforcement Learning algorithms such as DQN, DQN-MR,
and DQN-PER in a highway setting, we found that DQN-
PER with a discrete action space provided higher rewards
and better testing performance. To further enhance an agent’s
decision-making abilities in a discrete action space, we plan
to investigate additional methods. Additionally, we aim to ex-
plore these algorithms in continuous action space for possible
improvements.

REFERENCES

[1] Mnih, Volodymyr, et al. ”Playing atari with deep reinforcement learn-
ing.” arXiv preprint arXiv:1312.5602 (2013).

[2] Wang, Ziyu, et al. ”Dueling network architectures for deep reinforcement
learning.” International conference on machine learning. PMLR, 2016.

[3] Liu, Jing, and Yuncheol Kang. ”Automated Cryptocurrency Trading
Approach Using Ensemble Deep Reinforcement Learning: Learn to
Understand Candlesticks.” Available at SSRN 4348791 (2023).

[4] D’Arcy, Laura, Padraig Corcoran, and Alun Preece. ”Deep Q-Learning
for directed acyclic graph generation.” arXiv preprint arXiv:1906.02280
(2019).

[5] Hessel, Matteo, et al. ”Rainbow: Combining improvements in deep re-
inforcement learning.” Proceedings of the AAAI conference on artificial
intelligence. Vol. 32. No. 1. 2018.

[6] Dulac-Arnold, Gabriel, et al. ”Deep reinforcement learning in large
discrete action spaces.” arXiv preprint arXiv:1512.07679 (2015).

[7] Schaul, Tom, et al. ”Prioritized experience replay.” arXiv preprint
arXiv:1511.05952 (2015).


