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Abstract—Path planning is the key aspect for performance of
a mobile robot in any application. Creating a path around static
obstacles is achievable since decades but moving around dynamic
obstacles that present themselves on the planned path is a major
challenge for modern applications in robotics. In this paper we
present a solution combining sampling based algorithms AIT* &
BIT* for path planning and Model Predictive Control for obstacle
avoidance, and compare them to the already existing solutions
in a virtual environment using simulation tools like RViz and
Gazebo.

I. INTRODUCTION

Real-time optimal path planning of non-holonomic robots
is a complex problem in robotics that involves finding the
most efficient path for a robot to navigate from one loca-
tion to another while considering the physical constraints
and limitations of the robot. Non-holonomic robots, which
have restrictions on their movement and turning capabilities,
require specialized planning algorithms that can optimize their
trajectories while ensuring that they avoid obstacles and reach
their destination within a specified timeframe. This field of
research has applications in many areas, including autonomous
vehicles, mobile robots, and industrial automation, and is of
great importance for enabling robots to operate in real-world
environments with safety and efficiency. For this paper, we
are focusing on application impact in warehouse management.
In warehouse scenario, there is a complex environment and
multiple robots should operate in the same without collid-
ing. Each of these individual robots can be treated as one
dynamic obstacle. For these types of problems, we usually
need two planners. A global planner to find the optimal
path and the local planner to execute the motion in real-
time environment with dynamic obstacles. Our robot need to
navigate between the free spaces keeping safe distance from
the walls or racks and without collision with other dynamics.
The complexity of this problem increases exponentially as
we increase the number of agents in the environment. To
tackle these challenges, the work has been done considering
the sampling-based algorithms for global path planning and
algorithms like APF etc. for local path planning. We have
observed that some state-of-the-art algorithms perform better
than existing standard algorithms such as A*, RRT-variants
etc. Therefore, we are planning to explore and implement

more state-of-the-art algorithms such as AIT*, BIT* for global
planning and to combine these with the Model Predictive
Control (MPC) algorithm for local planning. MPC overcomes
some limitations of APF such as local minima problem and it
allows for the vehicles and obstacle constraints to be taken into
consideration. The effectiveness of planning algorithms in real-
world is directly influenced by computational cost and these
state-of-the-art algorithms proved efficient in computations.

A. Adaptively Informed Trees (AIT*)
AIT* is an extension of the traditional Informed RRT* algo-

rithm and uses an adaptive sampling strategy to generate a tree-
based roadmap of the environment. This strategy allows AIT*
to allocate more sampling effort in areas of the environment
where the robot is more likely to find a feasible path, reducing
the overall computational cost of the algorithm. Additionally,
AIT* uses a novel information-theoretic approach to evaluate
the quality of each candidate path. This approach allows the
algorithm to not only find the shortest path but also the
most informative path that provides the robot with the most
knowledge about its environment.

B. Batch Informed Trees (BIT*)
BIT* is also an extension of Informed RRT* algorithm but

is uses a batch processing approach to generate a tree-based
roadmap of the environment. This approach allows BIT* to
process multiple queries simultaneously, reducing the overall
computational cost of the algorithm. Additionally, BIT* uses
an informed sampling strategy. This strategy helps the algo-
rithm to quickly generate a roadmap of the environment and
plan a feasible path for the robot.

C. Model Predictive Control (MPC)
MPC is a control strategy that uses a dynamic model of the

system and a cost function to optimize the future trajectory
of the robot. The algorithm uses a finite horizon approach
to generate a sequence of control actions that minimize the
cost function over a certain time. At each time step, the MPC
algorithm re-optimizes the trajectory based on the current
state of the robot and updates the control actions accordingly.
MPC is particularly useful for robots operating in dynamic
environments where the optimal trajectory may change over
time.



II. RELATED WORK

There have been various approaches to motion planning
in the presence of dynamic obstacles, including potential
field approach, graph search-based algorithms, sampling-based
algorithms, and velocity obstacles. The literature suggests
that each approach has some degree of success in certain
areas, but also has flaws in other areas. The potential field
approach has drawbacks in terms of completeness of the
algorithm and the problem of local minima, while graph search
algorithms have superior completeness and optimality but have
increasing time complexity and space requirements. Sampling-
based techniques have weaker completeness and optimality
but can perform better in higher-dimensional problems if the
number of samples is chosen appropriately. Most of the authors
divide the problem into global and local planning. Hence, we
will explore the related work in following criteria for the same:

A. Graph-based planning approachess

From the perspective of planning, a path can be established
by utilizing graph searching algorithms that traverse the many
grid states, providing a solution—which is not always the best
one—or not (there is no conceivable solution) to the path
planning problem. The Dijkstra Algorithm is a graph-searching
technique that identifies the graph’s single-source shortest
path. The A-Star Algorithm (A*), an extension of Dijkstra’s
graph search algorithm, is a graph searching algorithm that
permits quick node searches thanks to the use of heuristics. It
works well for scanning places that the vehicle is familiar
with already [1], but it is expensive in terms of memory
and speed for large areas. Many mobile robotics applications,
such the dynamic A (D) [2], Field D [3], Theta [4], Anytime
repairing A (ARA) and Anytime D (AD) [5], have served as
the foundation for improvement.

B. Sampling-based planning approaches

By planning in high-dimensional spaces, these planners
attempt to address time constraints that deterministic tech-
niques cannot. The method entails randomly selecting the
configuration space or state space and searching within it
for connectedness [6]. The problem is that the solution is
not ideal. The Probabilistic Roadmap Method (PRM) and
the Rapidly Exploring Random Tree (RRT) are the two
techniques most frequently employed in robotics [7, 8]. By
doing a random search through the navigation area, it enables
quick planning in semi-structured settings [8]. It can also
take non-holonomic constraints into account. In sampling-
based planning, heuristics have been employed to direct the
search and concentrate the approximation. Rapidly-exploring
Random Trees (RRT) [8] is built upon by RRTConnect [9]
by progressively constructing two trees, one rooted in the
start state and the other in the destination state. Although this
method can produce very quick initial solution times, it is not
virtually certainly asymptotically optimal and does not become
better with further computational time. The almost certainly
asymptotically optimal RRT* [10] includes an ellipsoidal
heuristic into informed RRT* [11]. This does not direct the

search but increases the convergence rate by directing the
incremental approximation to the pertinent area of the state
space.
An growing number of states are sampled in batches by
Batch Informed Trees (BIT*) [12, 13], which perceives these
sampled states as an edge-implicit random geometric graph
(RGG) [14]. As a result, BIT* can process the states in order
of potential solution quality using a series of informed graph
searches. By employing incremental search methods, BIT* ef-
fectively reuses data from earlier searches and approximations,
but it does not alter its heuristic during the search.

C. Local path planning approaches

There are various approaches for local path planning. Some
of the standards are listed below which are used in non-
holonomic robots. Other algorithms can be found in the fig.1

Fig. 1. Comparison of local path planning algorithms

The concept of artificial potential field (APF) is derived from
the potential field concept in physics, which views object
movement as the outcome of two different types of forces.
The target point’s gravitational pull pulls on the robot in the
planning space, and the obstacle repels it. The robot moves
in the direction of the target point under the influence of the
two forces, and during movement it can avoid obstacles in
the planning space and arrive at the target safely. For real-
time robot path planning, Vadakkepat et al. [15] presented
a novel method dubbed evolutionary APF (EAPF). Through
simulating, the robustness and effectiveness are confirmed. A
virtual obstacle idea built on the APF was introduced by Min
GP et al. [16] to examine the path planning of mobile robots.
The outcomes demonstrate the method’s viability and ease
of use. A modified APF technique was put forth by Cao et
al. [17] for the path planning of mobile robots in dynamic
environments. The dynamic path-planning scheme’s usefulness
was shown by computer simulation and testing. Zhang et al.
[18] introduced the evolving APF approach as a solution to
the issues that path planning caught in local minimum.
Model Predictive Control (MPC), or alternatively Receding
Horizon Control (RHC), is a feedback control scheme that
generates the control action based on a finite horizon open loop
optimal control with the measured state as the initial state and



is capable of directly handling the state/input constraints. Due
to the strong results in industrial process control applications,
the MPC approach has grown highly popular [19].
Model predictive control (MPC) architectures have recently
been used to tackle collision avoidance issues, and this method
appears to have a lot of promise for delivering effective naviga-
tion that is easily extended to robust and nonlinear issues. They
have several advantages over commonly employed velocity
obstacle-based and artificial potential field (APF) approaches,
which may be more conservative when applied to higher order
vehicle models. MPC is still being developed and has many
advantageous characteristics for sensor-based navigation, such
as solutions to boundary following issues, the ability to avoid
moving impediments, and the ability to coordinate many
vehicles.

III. PROPOSED METHOD

We are implementing state-of-the-art algorithms like AIT*,
BIT* for global path planning along with MPC local path
planner. For baseline, we are comparing it with standard APF
+ RRT planner. We believe that this extension from the stan-
dard baseline algorithm will result into better computational
efficiency, less time-complexity and more smoothness of path
traversed. More details about these algorithms are described
below:

A. Batch Informed Trees (BIT*) Algorithm Overview

The key idea behind BIT* is to reduce the computational
cost of RRT* by processing batches of nodes instead of one
node at a time. This allows BIT* to explore the configuration
space more efficiently and converge to a solution faster
than RRT*. Additionally, the cost updates and pruning
steps help to maintain an efficient search tree that does
not waste computational resources exploring regions of the
configuration space that are unlikely to lead to a solution.
Here is a high-level overview of the BIT* algorithm:

1) Initialize the search tree with the start node.
2) Sample a batch of nodes from the configuration space.

These nodes are called ”waypoints”.
3) For each waypoint, attempt to connect it to the existing

tree by finding the nearest node in the tree and creating
a new edge between the waypoint and the nearest node.

4) Once all the waypoints have been connected to the tree,
perform a cost update for each node in the tree. The
cost of a node is the sum of the costs of the edges that
connect it to the root node.

5) Prune the tree by removing any nodes whose cost is
greater than a certain threshold.

6) Repeat steps 2-5 until the goal is reached or a certain
time limit is exceeded.

7) If a path to the goal is found, return it. Otherwise, return
failure.

Detailed Algorithm can be seen in fig. 2.

Fig. 2. BIT* algorithm

Fig. 3. visualization of BIT* algorithm

B. Adaptively Informed Trees (AIT*) Algorithm Overview

Adaptively Informed Trees (AIT*) is a sampling-based
motion planning algorithm that is designed to efficiently solve
high-dimensional motion planning problems with multiple
objectives. AIT* builds on the A* search algorithm and the
RRT* algorithm, combining their strengths and adding a few
novel techniques to achieve better performance. One key
feature of AIT* is its ability to adaptively choose the sampling
bias based on the proximity to the goal configuration. AIT*
uses a heuristic estimate of the remaining cost to the goal,
similar to A*, to bias the sampling towards areas closer to
the goal. This allows AIT* to efficiently explore the state



space and find a solution faster. Another feature of AIT* is
its ability to handle multiple objectives. AIT* uses a weighted
sum approach to combine the different costs, allowing the
user to specify the relative importance of each objective.
Additionally, AIT* uses a novel technique called ”cost-to-go
estimation” to estimate the cost of extending the tree towards
a sampled configuration.
Here is a high-level overview of the AIT* algorithm:

1) Initialize a tree with the starting configuration as the root
node.

2) Sample a random configuration in the state space and
find the closest node in the tree to it.

3) Extend the tree towards the sampled configuration by
generating a path from the closest node to the sampled
configuration.

4) Calculate the cost of the path based on the multiple
objectives, such as minimizing distance, maximizing
clearance, or minimizing time.

5) Update the cost of all nodes along the path and rewire
the tree to ensure optimality.

6) Repeat steps 2 to 5 until the goal configuration is reached
or a certain termination condition is met.

7) If the goal configuration is reached, return the path from
the root node to the goal configuration. Otherwise, return
failure.

Detailed Algorithm can be seen in fig. 4.

C. Model Predictive Control Algorithm Overview

The following is a high-level algorithm overview of Non-
linear Model Predictive Control (NMPC):
System modeling: Develop a mathematical model that de-
scribes the behavior of the system being controlled. This
model should be nonlinear and time-varying, accounting for
any nonlinearities and dynamics present in the system.
Define control objectives: Determine the control objectives,
including the desired output and any constraints on the inputs
and outputs.
Time horizon selection: Select a time horizon over which to
optimize the control actions. This time horizon is typically
divided into a finite number of time intervals or ”prediction
horizons”.
Predict future system behavior: Using the mathematical model,
predict the future behavior of the system over the prediction
horizons.
Optimization: Determine the optimal control actions that
achieve the desired output while satisfying the input and output
constraints, based on the predicted behavior of the system.
Implementation: Implement the optimal control actions for
the current time interval, and update the model and control
strategy for the next time interval.
Repeat: Repeat steps 4-6 for each time interval in the pre-
diction horizon, continuously updating the model and control
strategy as needed.
Overall, NMPC is a complex and computationally intensive

Fig. 4. AIT* algorithm

Fig. 5. visualization of AIT* algorithm

control strategy that involves predicting the future behavior of
the system, optimizing control actions based on this prediction,
and implementing the optimal actions over a finite prediction
horizon. NMPC is an effective approach for controlling non-
linear systems with time-varying dynamics and constraints,
and it is widely used in process control, robotics, and other
advanced control applications.

IV. EXPERIMENT

In this section, we are planning to evaluate the performance
of the proposed planner (AIT*, BIT* + MPC planner) in
comparison to baseline based on our quantifying metrics. In
the experiments we are conducting, the robot will have start
point and end point given by the user in the dynamic obstacle
environment. Here, dynamic obstacles represent the other
robots and some randomly placed obstacles in the warehouse



which are not present in the map while global planning.
To begin with, we are experimenting on a 2D toy problem
and the baseline we are considering is RRT + APF planner
as considered state-of-the-art algorithms are the extensions
of informed RRT*. After successful implementation of this
2D toy problem, we are planning to simulate the proposed
planner in Gazebo warehouse environment and compare it
with the baseline planner in this environment. We will be
using Rviz for visualization purposes.

A. Performance Criteria

We are planning to evaluate these state-of-the-art algorithms
with the standard RRT + APF planner with below performance
metrics:

• Percentage of dynamic obstacles detected
• Computational efficiency
• Energy consumption
• Time taken to traverse the path
• Smoothness of path traversal
• Accuracy of optimal path traversal

B. Simulation Setup

We have conducted a thorough literature review of the
latest algorithms used for both local and global path planning
of non-holonomic robots and gain understanding of how these
algorithms work. The implementation is planned in following
2 scenarios.

• 2D toy problem Scenario: 2D baseline environment is
implemented in python which uses RRT + APF path
planner. The results are shown below. We are working on
algorithm implementations and will be demonstrated in
the similar fashion as baseline implementation. Therefore,
it will be better for visualizing the differences between
standard baseline and proposed state-of-the-art planner
implementations. Fig. 6 shows the path explored and
proposed by RRT. Fig. 7 shows the path explored and
proposed by BIT*. Fig. 8 shows the path explored and
proposed by AIT*. This implementation is done in python
and visualized using matplotlib.

• Warehouse Scenario: As one of our application impact
is warehouse management, we have started with creating
an environment in Gazebo and planning to do the further
simulations in the same.

1) Smaller version of a warehouse environment
2) A maze type warehouse environment

C. Simulation Results

For the algorithms stated before we’ve used the described
simulation setup to run their implementation and compare
them according to the performance criteria.

• Cost to goal
This criteria shows us how the cost to goal changes per
algorithm as the execution ensues. Fig. 12 shows that cost

Fig. 6. Path planning using RRT

Fig. 7. Path planning using BIT*

Fig. 8. Path planning using AIT*



Fig. 9. Warehouse environment (orthogonal view)

Fig. 10. Warehouse environment (top view)

Fig. 11. TurtleBot traversing Warehouse environment

to goal for RRT stays the same until the goal node is find.
Fig. 13 shows that cost to goal for BIT* reduces once
the goal is found and is further dropped when the path is
optimized. Fig. 14 shows the cost for AIT* reduces once
the goal is found and then the algorithm tries to optimise
it.

Fig. 12. Change in cost to goal in RRT

Fig. 13. Change in cost to goal in BIT*

• Nodes explored
This criteria shows us the computation needed per al-
gorithm to reach to the goal. Fig. 15 shows that the
total number of nodes explored increases as the algorithm
executes. We can also see that the number of nodes
explored is multiple times that of BIT* or AIT*. Fig. 16
shows that the total number of nodes explored in BIT*
increases and once the goal is found the unnecessary
nodes are pruned and the value drops. As the optimization
occurs the number of nodes increases again. Fig. 17
shows that the total number of nodes explored in AIT*
is continuously increasing till the goal is reached.

• Optimization time
This criteria shows us how long the algorithm takes



Fig. 14. Change in cost to goal in AIT*

Fig. 15. Nodes explored in RRT

Fig. 16. Nodes explored in BIT*

Fig. 17. Nodes explored in AIT*

to optimize the given trajectory. Fig. 18 shows us the
optimization time for each path point provided by the
global path planner.

Fig. 18. Optimization time for MPC

• Path Deviation
Path deviation refers to the alteration of provided path to
avoid the unplanned obstacle in path. Fig. 19 shows us
how much the robot deviates from the planned trajectory
over time.

D. Limitations experienced

• AIT* is more computationally expensive than search
algorithms such as RRT* and BIT*.

• BIT* requires large memory to store the search tree.
• BIT* is sensitive to the parameters such as batch size and

threshold for node expansion.
• Careful Tuning of MPC is required which can be time

consuming.
• Accurate model of the system is required in MPC for

good performance.



Fig. 19. Path deviation of robot during trajectory tracking

• If obstacles are placed such that the optimization provides
2 possible path for consecutive time steps, then the robot
may collide.

V. TASK DIVISION

• Literature Review: Collaborative Effort
• Environment Setup: Keshubh, Abizer
• Global Planner Implementation: Keshubh, Swapneel
• Local Planner Implementation: Swapneel, Abizer
• Output Evaluation: Collaborative Effort
• Documentation: Collaborative Effort
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